ESTAR
 INTERVENTION

Tier 2 Mathematics Intervention

Module: Fraction \& Decimal Relationships (FDR)

Teacher Display Masters

The Meadows Center

FOR PREVENTING EDUCATIONAL RISK THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF EDUCATION

Mathematics Institute for Learning Disabilities and Difficulties

www.meadowscenter.org

O2012 University of Texas System/Texas Education Agency

These materials are copyrighted © by and are the property of the Texas Education Agency and the University of Texas System and may not be reproduced or distributed without their written permission, except by Texas public school educators under the following conditions:

1. Any portion reproduced or distributed is used exclusively for nonprofit educational purposes in Texas.
2. No monetary charge is made for the reproduced materials, any document containing them, or any activity at which they are distributed; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.
3. No modifications or changes are made to the materials by anyone without the express written permission of the University of Texas System and the Texas Education Agency.

To obtain a license to reprint large quantities, or to use the materials in a manner not specified above, contact copyrights@tea.state.tx.us

Write the fraction for the shaded part.
1.) \qquad

2.)

3.)

4.) \qquad

Write the fraction for the shaded part.

2.) $\frac{5}{10}$

3.) $\frac{4}{8}$

4.) $\frac{6}{12}$

Read the problem and answer the questions below.
1.) Lin divided her piece of paper into 10 equal parts. She used $\frac{9}{10}$ of the paper for a project. Shade the model to represent the amount of paper Lin used.

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Lin used? \qquad

How many tenths are shaded? \qquad

What fraction of the paper did Lin not use? \qquad
2.) Alex ate $\frac{2}{10}$ of the lasagna. Shade the model to represent the amount of lasagna Alex ate.

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Alex ate? \qquad

How many tenths are shaded? \qquad

What fraction of the lasagna was left after Alex ate? \qquad

Write the fraction for the amount shaded of the whole.
3.) \qquad

4.) \qquad

Shade the fraction.
5.) one-tenth

Tenths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be "O."
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player's answer is correct, then mark the box with either an " X " or an " O."
5. Continue to take turns.
6. Play the game until one player has 3 boxes filled in any column, row, or diagonal.

Read the problem and answer the questions below.
1.) Lin divided her piece of paper into 10 equal parts. She used $\frac{9}{10}$ of the paper for a project. Shade the model to represent the amount of paper Lin used.

Which pieces shaded will vary.

What is the denominator, the number of parts that make the whole?

What is the numerator, the number of parts Lin used? \qquad How many tenths are shaded? \qquad
What fraction of the paper did Lin not use? $\frac{1}{10}$
2.) Alex ate $\frac{2}{10}$ of the lasagna. Shade the model to represent the amount of lasagna Alex ate.

Which pieces shaded will vary.

What is the denominator, the number of parts that make the whole?
\square 10

What is the numerator, the number of parts Alex ate? 2

How many tenths are shaded? \qquad
What fraction of the lasagna was left after Alex ate? $\frac{\frac{8}{10}}{}$

Write the fraction for the amount shaded of the whole.
3.) \qquad

Shade the fraction.
5.) one-tenth

Tenths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be "O."
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player's answer is correct, then mark the box with either an " X " or an " O."
5. Continue to take turns.
6. Play the game until one player has 3 boxes filled in any column, row, or diagonal.

$\boxed{4}$

Write the fraction for the amount shaded of the whole.
1.) \qquad

2.) \qquad

Shade the fraction.
3.) $\frac{5}{10}$

4.) Choose the model that shows $\frac{7}{10}$.

C

\square

Write the fraction for the amount shaded of the whole.

Shade the fraction.
3.) $\frac{5}{10}$

4.) Choose the model that shows $\frac{7}{10}$.

Write the fraction.
1.) \qquad

2.) \qquad

3.) \qquad

Shade the fraction.
4.) $\frac{4}{10}$

5.) $\frac{1}{10}$

Write the fraction.

Shade the fraction.
4.) $\frac{4}{10}$

5.) $\frac{1}{10}$

1.) Katey and Rose shared a loaf of bread. Katey ate $\frac{2}{10}$ and Rose ate $\frac{4}{10}$ of the loaf of bread. How much bread did they eat?

Equation:
2.) There is $\frac{8}{10}$ of a birthday cake. Kwantay ate $\frac{2}{10}$ of the cake. How much cake is left?

Equation:

\qquad
1.) Katey and Rose shared a loaf of bread. Katey ate $\frac{2}{10}$ and Rose ate $\frac{4}{10}$ of the loaf of bread. How much bread did they eat?

Equation: $\quad \frac{2}{10}+\frac{4}{10}=\frac{6}{10}$
2.) There is $\frac{8}{10}$ of a birthday cake. Kwantay ate $\frac{2}{10}$ of the cake. How much cake is left?

Equation: $\quad \frac{8}{10}-\frac{2}{10}=\frac{6}{10}$

Shade the models and solve.
1.) $\frac{1}{10}+\frac{7}{10}=$

2.) $\frac{8}{10}-\frac{4}{10}=$

Write an equation and solve.
3.) There is $\frac{9}{10}$ of a brownie left in the pan. David ate $\frac{5}{10}$. How much of a brownie is left after David ate $\frac{5}{10}$?
4.) Write an addition equation for the picture below.

5.) Write a subtraction equation for the picture below.

Shade the models and solve.
1.) $\frac{1}{10}+\frac{7}{10}=\underline{\frac{8}{10}}$

$+$

2.) $\frac{8}{10}-\frac{4}{10}=\underline{\frac{4}{10}}$

Write an equation and solve.
3.) There is $\frac{9}{10}$ of a brownie left in the pan. David ate $\frac{5}{10}$. How much of a brownie is left after David ate $\frac{5}{10}$?

$$
\frac{9}{10}-\frac{5}{10}=\frac{4}{10}
$$

4.) Write an addition equation for the picture below.

$$
\frac{3}{10}+\frac{2}{10}=\frac{5}{10}
$$

5.) Write a subtraction equation for the picture below.

$$
\frac{7}{10}-\frac{3}{10}=\frac{4}{10}
$$

Write the fraction for the shaded amount of the whole.
1.) \qquad

Shade the whole to represent the fraction.
2.) $\frac{6}{10}$

Choose the correct answer.
3.) Which fraction does the model represent.

A $\frac{7}{10}$
B $\frac{9}{10}$
C $\frac{1}{10}$
D $\frac{8}{10}$

Module FDR Lesson 2 Independent Practice

Shade the models and then solve.
4.) $\frac{2}{10}+\frac{4}{10}=$ \qquad

5.) $\frac{6}{10}-\frac{3}{10}=$

Write an equation and solve.
6.) Julie ran $\frac{7}{10}$ of a mile. Dan ran $\frac{2}{10}$ of a mile less than Julie. How far did Dan run?

Write the fraction for the shaded amount of the whole.
1.) $\frac{7}{10}$

Shade the whole to represent the fraction.
2.) $\frac{6}{10}$

Choose the correct answer.
3.) Which fraction does the model represent.

A $\frac{7}{10}$
(B) $\frac{9}{10}$
C $\frac{1}{10}$
D $\frac{8}{10}$

Module FDR

Shade the models and then solve.
4.) $\frac{2}{10}+\frac{4}{10}=\frac{6}{10}$

5.) $\frac{6}{10}-\frac{3}{10}=\frac{3}{10}$

Write an equation and solve.
6.) Julie ran $\frac{7}{10}$ of a mile. Dan ran $\frac{2}{10}$ of a mile less than Julie. How far did Dan run?

$$
\frac{7}{10}-\frac{2}{10}=\frac{5}{10}
$$

Shade the model to represent the fraction.
1.) $\frac{24}{100}$

2.) $\frac{6}{100}$

3.) $\frac{19}{100}$

4.) It rained $\frac{59}{100}$ of an meter yesterday. Shade the model to represent how much it rained.

Write the fraction for the shaded model.
5.) \qquad

6.) \qquad

Hundredths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be "O."
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player's answer is correct, then mark the box with either an " X " or an " O."
5. Continue to take turns.
6. Play the game until one player has 3 boxes in any column, row, or diagonal.

Shade the model to represent the fraction.
1.) $\frac{24}{100}$

2.) $\frac{6}{100}$

3.) $\frac{19}{100}$

4.) It rained $\frac{59}{100}$ of an meter yesterday. Shade the model to represent how much it rained.

Write the fraction for the shaded model.
5.) $\frac{38}{100}$

6.)

Hundredths Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be "O."
3. Take turns selecting a problem in the box. Write the fraction or shade in the box.
4. If the player's answer is correct, then mark the box with either an " X " or an " O."
5. Continue to take turns.
6. Play the game until one player has 3 boxes in any column, row, or diagonal.

Write the fraction for the shaded amount of the whole.
1.) \qquad

2.) Choose the model that has $\frac{6}{10}$ shaded.
A

C

B

D

Module FDR
 Lesson 3 Independent Practice

Use the model to solve.
3.) $\frac{3}{10}+\frac{5}{10}=$

4.) $\frac{4}{10}-\frac{1}{10}=$

Shade the model to represent the fraction.
5.) $\frac{31}{100}$

Write the fraction for the shaded model.
5.) \qquad

6.) \qquad

8.) Choose the model that has $\frac{82}{100}$ shaded.
A

C

B

D

Write the fraction for the shaded amount of the whole.
1.) $\frac{4}{10}$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

2.) Choose the model that has $\frac{6}{10}$ shaded.
C

B

(D)

Use the model to solve.
3.) $\frac{3}{10}+\frac{5}{10}=\frac{8}{10}$

4.) $\frac{4}{10}-\frac{1}{10}=\underline{\frac{3}{10}}$

Shade the model to represent the fraction.
5.) $\frac{31}{100}$

Write the fraction for the shaded model.
5.) $\frac{14}{100}$

6.) $\frac{\frac{52}{100}}{}$

8.) Choose the model that has $\frac{82}{100}$ shaded.

(C)

B

D

1.) It snowed $\frac{13}{100}$ of a meter on Monday and $\frac{16}{100}$ of a meter on Tuesday. It did not snow at all on Wednesday. How much snow fell in all 3 days?

Equation: \qquad
2.) Ana measured $\frac{40}{100}$ of a meter of rain in the rain gauge. $\frac{20}{100}$ of a meter later evaporated. How much rain is left in the rain gauge?

Equation: \qquad
1.) It snowed $\frac{13}{100}$ of a meter on Monday and $\frac{16}{100}$ of a meter on Tuesday. It did not snow at all on Wednesday. How much snow fell in all 3 days?

Equation: $\frac{13}{100}+\frac{16}{100}=\frac{29}{100}$
2.) Ana measured $\frac{40}{100}$ of a meter of rain in the rain gauge. $\frac{20}{100}$ of a meter later evaporated. How much rain is left in the rain gauge?

Equation: $\frac{40}{100}-\frac{20}{100}=\frac{20}{100}$

Shade the models and solve.
1.) $\frac{23}{100}+\frac{44}{100}=$ \qquad

2.) $\frac{80}{100}-\frac{20}{100}=$

3.) It snowed three hundredths of a meter on Friday and four hundredths of a meter on Saturday. How much snow fell both days? Write an equation and solve.
\qquad

Write the fraction.
4.) sixty-six hundredths \qquad
5.) nine hundredths \qquad
6.) ninety six hundredths \qquad

Shade the models and solve.
1.) $\frac{23}{100}+\frac{44}{100}=\underline{\frac{67}{100}}$

2.) $\frac{80}{100}-\frac{20}{100}=\frac{60}{100}$

3.) It snowed three hundredths of a meter on Friday and four hundredths of a meter on Saturday. How much snow fell both days? Write an equation and solve.

Write the fraction.
4.) sixty-six hundredths $\frac{66}{100}$
5.) nine hundredths $\frac{\frac{9}{100}}{}$
6.) ninety six hundredths $\frac{96}{100}$
1.) Choose the best answer. Which fraction represents the shaded model?

A $\frac{25}{100}$
B $\frac{35}{100}$
C $\frac{36}{100}$
D $\frac{65}{100}$

Shade the model and solve
2.) $\frac{8}{10}-\frac{3}{10}=$

Write the fraction.
3.)

Shade the models and solve.
4.) $\frac{32}{100}+\frac{18}{100}=$

5.) $\frac{56}{100}-\frac{14}{100}=$

Write the fraction.
6.) eight hundredths \qquad
7.) forty-three hundredths \qquad
8.) Shade the models and solve.

$$
\frac{67}{100}+\frac{22}{100}=
$$

$+$

A $\frac{99}{100}$

B $\frac{91}{100}$

C $\frac{89}{100}$
D $\frac{98}{100}$
1.) Choose the best answer. Which fraction represents the shaded model?

A $\frac{25}{100}$
B $\frac{35}{100}$
(C) $\frac{36}{100}$
D $\frac{65}{100}$

Shade the model_and solve
2.) $\frac{8}{10}-\frac{3}{10}=\frac{}{10}$

Write the fraction.

Shade the models and solve.
4.) $\frac{32}{100}+\frac{18}{100}=\underline{100}$

5.) $\frac{56}{100}-\frac{14}{100}=\underline{\frac{42}{100}}$

Write the fraction.
6.) eight hundredths $\frac{8}{100}$
7.) forty-three hundredths $\frac{43}{100}$
8.) Shade the models and solve.

$$
\begin{aligned}
& \frac{67}{100}+\frac{22}{100}=\frac{89}{100} \\
& \hline
\end{aligned}
$$

A $\frac{99}{100}$
B $\frac{91}{100}$
(C) $\frac{89}{100}$

D $\frac{98}{100}$

Use the fraction bar to help find the equivalent fraction.
1.) $\frac{4}{5}=\frac{\square}{10}$

2.) $\frac{2}{3}=\frac{\square}{12}$

3.) $\frac{1}{3}=\frac{\square}{6}$

4.) $\frac{1}{2}=\frac{\square}{8}$

Use the fraction bar to help find the equivalent fraction.
1.) $\frac{4 \times 2}{5 \times 2}=\frac{8}{10}$

2.) $\frac{2 \times 4}{3 \times 4}=\frac{8}{12}$

3.) $\frac{1 \times 2}{3 \times 2}=\frac{2}{6}$

4.) $\frac{1 \times 4}{2 \times 4}=\frac{4}{8}$

II

\square

Shade the model and use multiplication to find the equivalent fraction.
1.)

$\frac{4}{10}=\frac{\square}{100}$
2.)

$\frac{8}{10}=\frac{\square}{100}$
3.)

$$
\frac{3}{10}=\frac{\square}{100}
$$

4.) Marcus measured the width of his fingernail to be $\frac{2}{10}$ of a centimeter. Shade the models and use multiplication to find the equivalent fraction in hundredths.

$$
\frac{2}{10}=\frac{\square}{100}
$$

The width of Marcus' fingernail in hundredths is \qquad .

Shade the model and use multiplication to find the equivalent fraction.
1.)

$$
\frac{4 \times 10}{10 \times 10}=\frac{40}{100}
$$

2.)

$$
\frac{8 \times 10}{10 \times 10}=\frac{80}{100}
$$

3.)

$$
\frac{3}{10}=\frac{30}{100}
$$

4.) Marcus measured the width of his fingernail to be $\frac{2}{10}$ of a centimeter. Shade the models and use multiplication to find the equivalent fraction in hundredths.

$$
\frac{2}{10}=\frac{20}{100}
$$

The width of Marcus' fingernail in hundredths is $\frac{20}{100}$.

Use the models below to solve.
1.) $\frac{25}{100}-\frac{15}{100}=$ \qquad

Write the fraction.
2.) three-tenths \qquad
3.) nine-hundredths \qquad
4.) fifty-six hundredths \qquad
Shade the model and use multiplication to find the equivalent fraction.
5.)

$$
\frac{6}{10}=\frac{\square}{100}
$$

Shade the model and use multiplication to find the equivalent fraction.
6.)

$$
\frac{2}{10}=\frac{\square}{100}
$$

7.)

$$
\frac{9}{10}=\frac{\square}{100}
$$

Choose the best answer.
8.) Which model represents the number of hundredths that are equivalent to $\frac{5}{10}$?
A

C

B

D

\square

Use the models below to solve.
1.) $\frac{25}{100}-\frac{15}{100}=\underline{100}$

Write the fraction. $\frac{3}{10}$
2.) three-tenths
3.) nine-hundredths $\frac{\frac{9}{100}}{\frac{56}{100}}$

Shade the model and use multiplication to find the equivalent fraction.
5.)

$$
\frac{6 \times 10}{10 \times 10}=\frac{60}{100}
$$

Shade the model and use multiplication to find the equivalent fraction.
6.)

$$
\frac{2}{10}=\frac{20}{100}
$$

7.)

$$
\frac{9}{10}=\frac{90}{100}
$$

Choose the best answer.
8.) Which model represents the number of hundredths that are equivalent to $\frac{5}{10}$?
A

C

B

(D)

Compare using greater than $>$, less than $<$, or equal $=$
1.) $\frac{20}{100} \bigcirc \frac{90}{100}$
2.) $\frac{56}{100} \bigcirc \frac{54}{100}$
3.) $\frac{9}{100} \bigcirc \frac{35}{100}$
4.) $\frac{81}{100} \bigcirc \frac{18}{100}$

Compare using greater than $>$, less than $<$, or equal $=$
1.) $\frac{20}{100}<\frac{90}{100}$
2.) $\frac{56}{100}>\frac{54}{100}$
3.) $\frac{9}{100}>\frac{35}{100}$
4.) $\frac{81}{100}>\frac{18}{100}$

$\frac{70}{100}>$

$\wedge \mid ㅇ$

Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.
1.) $\frac{6}{10} \bigcirc \frac{56}{100}$

$$
\frac{6}{10}=\frac{}{100}
$$

$\frac{56}{100}$
2.) $\frac{48}{100} \bigcirc \frac{5}{10}$

$\frac{48}{100}$

$\frac{5}{10}=\frac{}{100}$
3.) $\frac{4}{10} \bigcirc \frac{47}{100}$

$$
\frac{4}{10}=\frac{}{100}
$$

$\frac{47}{100}$

Use the model to solve the problem.
4.) Martin walks $\frac{76}{100}$ of a mile to school. Christina walks $\frac{8}{10}$ of a mile to school. Who walks further to school?

$\frac{76}{100}$

$\frac{8}{10}=\frac{}{100}$
\qquad

Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write $<$ or $>$.
1.) $\frac{6}{10}>\frac{56}{100}$

$$
\frac{6}{10}=\frac{60}{100}
$$

2.) $\frac{48}{100}<\frac{5}{10}$

$\frac{56}{100}$
$\frac{48}{100}$

$$
\frac{5}{10}=\frac{50}{100}
$$

3.) $\frac{4}{10}<\frac{47}{100}$

$$
\frac{4}{10}=\frac{40}{100}
$$

$\frac{47}{100}$

Use the model to solve the problem.
4.) Martin walks $\frac{76}{100}$ of a mile to school. Christina walks $\frac{8}{10}$ of a mile to school. Who walks further to school?

$\frac{76}{100}$

$\frac{8}{10}=\frac{80}{100}$

Christina

Shade the model and use multiplication to find the equivalent fraction.
1.)

$$
\frac{4}{10}=\frac{\square}{100}
$$

2.) Choose the model that represents the number of hundredths that are equivalent to $\frac{7}{10}$.

Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.
3.) $\frac{4}{10} \bigcirc \frac{37}{100}$

$$
\frac{4}{10}=\frac{}{100}
$$

$\frac{37}{100}$

Use the models to solve the problem.
4.) $\frac{77}{100} \bigcirc \frac{7}{10}$

$\frac{77}{100}$

$$
\frac{7}{10}=\frac{}{100}
$$

5.) $\frac{9}{10} \bigcirc \frac{93}{100}$

$\frac{9}{10}=\frac{}{100}$

$\frac{93}{100}$
6.) Choose the letter that shows the fractions compared correctly.
A $\frac{4}{10}<\frac{38}{100}$
C $\frac{5}{10}<\frac{54}{100}$
B $\frac{8}{10}>\frac{81}{100}$
D $\frac{33}{100}<\frac{3}{10}$

Shade the model and use multiplication to find the equivalent fraction.
1.)

$$
\frac{4}{10}=\frac{40}{100}
$$

2.) Choose the model that represents the number of hundredths that are equivalent to $\frac{7}{10}$.

Shade the models to represent the two fractions. Find a fraction with a common denominator, and then write < or >.
3.) $\frac{4}{10}>\frac{37}{100}$

$$
\frac{4}{10}=\frac{40}{100}
$$

$\frac{37}{100}$

Use the models to solve the problem.
4.) $\frac{77}{100}<\frac{7}{10}$

$\frac{77}{100}$

$$
\frac{7}{10}=\frac{70}{100}
$$

5.) $\frac{9}{10}<\frac{93}{100}$

$$
\frac{9}{10}=\frac{90}{100}
$$

$\frac{93}{100}$
6.) Choose the letter that shows the fractions compared correctly.
A $\frac{4}{10}<\frac{38}{100}$
(C) $\frac{5}{10}<\frac{54}{100}$
B $\frac{8}{10}>\frac{81}{100}$
D $\frac{33}{100}<\frac{3}{10}$

Write the fraction and decimal for the shaded area.
1.)

2.)

Shade and write the decimal.
3.)

$$
1 \frac{2}{10}
$$

4.)

Write and read the fraction and decimal for the shaded model.
5.)

fraction \qquad decimal \qquad
6.)

fraction \qquad decimal \qquad

Write and read the fraction and decimal for the shaded model.

fraction \qquad decimal \qquad
8.)

fraction \qquad decimal \qquad
9.)

\qquad
\qquad

Write the fraction and decimal for the shaded area.
1.)

2.)

Shade and write the decimal.
3.)

$1 \frac{2}{10}$

ones	tenths
1	2

4.)

ones	tenths
0	8

Write and read the fraction and decimal for the shaded model.
5.)

6.)

Write and read the fraction and decimal for the shaded model.

Shade the model and use multiplication to find the equivalent fraction.
1.)

$$
\frac{5}{10}=\frac{\square}{100}
$$

2.) Choose the model that represents the number of hundredths that are equivalent to $\frac{4}{10}$.

C

B

3.) Choose the letter that shows the fractions compared correctly.
A $\frac{9}{10}<\frac{86}{100}$
c $\frac{5}{10}<\frac{45}{100}$
B $\frac{2}{10}>\frac{23}{100}$
D $\frac{77}{100}<\frac{8}{10}$
4.) Write the fraction and decimal for the shaded area.

Module FDR Lesson 7 Independent Practice

5.) Choose the letter of the model with 0.6 shaded.
A

C

B

D

6.) Which fraction represents the decimal number 0.9 ?
A 9
C $\frac{90}{100}$
B $\frac{9}{10}$
D $\frac{7}{100}$

Shade the model and use multiplication to find the equivalent fraction.
1.)

$$
\frac{5}{10}=\frac{50}{100}
$$

2.) Choose the model that represents the number of hundredths that are equivalent to $\frac{4}{10}$.

(C)

B

D

3.) Choose the letter that shows the fractions compared correctly.
A $\frac{9}{10}<\frac{86}{100}$
c $\frac{5}{10}<\frac{45}{100}$
B $\frac{2}{10}>\frac{23}{100}$
(D) $\frac{77}{100}<\frac{8}{10}$
4.) Write the fraction and decimal for the shaded area.

5.) Choose the letter of the model with 0.6 shaded.

C

B

D

6.) Which fraction represents the decimal number 0.9 ?
A 9
C $\frac{90}{100}$
(B) $\frac{9}{10}$
D $\frac{7}{100}$

Write the fraction and decimal for the shaded area.
1.)

2.)

Shade the model and write the decimal.
3.)

$1 \frac{52}{100}$

Write and read the fraction and decimal for the shaded model.
1.)

fraction \qquad decimal \qquad
2.)

fraction \qquad decimal \qquad
3.)

fraction \qquad decimal \qquad
4.)

fraction \qquad decimal \qquad

Write the fraction and decimal for the shaded area.
1.)

ones	tenths	hundredths
0	0	1

2.)

ones	tenths	hundredths
0	3	9

Shade the model and write the decimal.
3.)

$1 \frac{52}{100}$

ones	tenths	hundredths
1	5	2

Write and read the fraction and decimal for the shaded model.
1.)

2.)

3.)

\qquad
4.)

fraction $\quad 1 \frac{4}{100}$

1.) Choose the letter that shows the fractions compared correctly.
A $\frac{5}{10}<\frac{53}{100}$
c $\frac{6}{10}>\frac{67}{100}$
B $\frac{2}{10}>\frac{40}{100}$
D $\frac{8}{100}=\frac{8}{10}$
2.) Write the fraction and decimal for the shaded area.

\qquad decimal \qquad
3.) Choose the best answer. Which model represents 0.4 ?
A

C

B

D

4.) Which fraction represents the decimal number 0.2 ?
A $\frac{2}{10}$
C $\frac{2}{100}$
B $\frac{20}{100}$
D 2
5.) Write the fraction and decimal for the shaded area.

6.) Shade and write the decimal.

$1 \frac{91}{100}$

ones	tenths	hundredths

7.) Micah was recording information in science class. His lab partner stated it rained one and thirty-six hundredths of a centimeter. Which of the following decimal numbers should Micah write on his paper?

A 1.26
B 0.36
C 1.06
D 1.36
\square

Module FDR
 Lesson 8 Independent Practice Key

1.) Choose the letter that shows the fractions compared correctly.
(A) $\frac{5}{10}<\frac{53}{100}$
c $\frac{6}{10}>\frac{67}{100}$
B $\frac{2}{10}>\frac{40}{100}$
D $\frac{8}{100}=\frac{8}{10}$
2.) Write the fraction and decimal for the shaded area.

3.) Choose the best answer. Which model represents 0.4 ?
A

C

B

(D)

4.) Which fraction represents the decimal number 0.2 ?
(A) $\frac{2}{10}$
C $\frac{2}{100}$
B $\frac{20}{100}$
D 2

5.) Write the fraction and decimal for the shaded area.

ones	tenths	hundredths
0	6	4

6.) Shade and write the decimal.

$1 \frac{91}{100}$

ones	tenths	hundredths
1	9	1

Module FDR
 Lesson 8 Independent Practice Key

7.) Micah was recording information in science class. His lab partner stated it rained one and thirty-six hundredths of a centimeter. Which of the following decimal numbers should Micah write on his paper?

A 1.26
B 0.36
C 1.06
(D) 1.36

Read the following decimals:
1.2
6.8
3.47
4.09

Write the number in the place value chart and in expanded notation.
378

Thousands	Hundreds	Tens	Ones

\qquad

5,107

Thousands	Hundreds	Tens	Ones

Read the following decimals:

three and
forty-seven
hundredths hundredths
Write the number in the place value chart and in expanded notation.
378

5,107

Thousands	Hundreds	Tens	Ones
5	1	0	7

$5,000+100+7$
8.36

8.36

$\underline{8.0}+\underline{0.3}+\underline{0.06}$

Write the number in the place value chart and then in expanded notation.
1.) 3.7

ones	tenths	hundredths

2.) 4.62

ones	tenths	hundredths

3.) 9.08

ones	tenths	hundredths

Write the number in the place value chart and then in expanded notation.
1.) 3.7

ones	tenths	hundredths
3	7	0

$$
3.0+0.7
$$

2.) 4.62

ones	tenths	hundredths
4	6	2

$$
4.0+0.6+0.02
$$

3.) 9.08

ones	tenths	hundredths
9	0	8

$9.0+0.08$

Write the fraction and decimal for the amount shown.
1.)

2.)

Write the number in the place value chart and then in expanded notation.
3.) 8.5

ones	tenths	hundredths

4.) 2.93

ones	tenths	hundredths

5.) 7.01

ones	tenths	hundredths

6.) Choose the letter that shows the expanded notation for 6.38 .

A $6.0+0.8+0.03$
B $\quad 600+30+8.0$
C $6.0+0.3+0.08$
D $6.0+3.0+8.0$

Write the fraction and decimal for the amount shown.
1.)

2.)

ones	tenths	hundredths
1	3	8

Write the number in the place value chart and then in expanded notation.
3.) 8.5

ones	tenths	hundredths
8	5	0

$8.0+0.5$
4.) 2.93

ones	tenths	hundredths
2	9	3

$2.0+0.9+0.03$
5.) 7.01

ones	tenths	hundredths
7	0	41

$7.0+0.01$
6.) Choose the letter that shows the expanded notation for 6.38 .

A $6.0+0.8+0.03$
B $600+30+8.0$
(C) $6.0+0.3+0.08$

D $6.0+3.0+8.0$

은

4.) What decimal represents point C ? $\frac{1.7}{\text { 5.) What decimal represents point } A \text { ? } \frac{1.3}{}} \begin{aligned} & \text { 6.) What decimal represents point } B \text { ? } \quad 1.9\end{aligned}$.

은

Write the fraction and decimal for the amount shown.
1.)

2.)

Write the number in the place value chart and then in expanded notation.
3.) 6.2

ones	tenths	hundredths

4.) Choose the letter that shows the number expression for 5.15 .

A $5.0+0.1$
B $500+15$
C $5.0+0.5+0.1$
D $5.0+0.1+0.05$
5.) What fraction represents point C ? \qquad

6.) What decimal represents point L ?

Write the fraction and decimal for the amount shown.
1.)

2.)

ones	tenths	hundredths
1	5	6

Module FDR
 Lesson 10 Independent Practice Key

Write the number in the place value chart and then in expanded notation.
3.) 6.2

ones	tenths	hundredths
6	2	0

$6.0+0.2$
4.) Choose the letter that shows the number expression for 5.15 .

A $5.0+0.1$
B $500+15$
C $5.0+0.5+0.1$
(D) $5.0+0.1+0.05$
5.) What fraction represents point C? $\frac{9}{10}$

6.) What decimal represents point L ?

Write the fraction and decimal for the shaded models.

$\stackrel{y}{-}-0$ Module FDR Lesson 11 Engaged Practice Key

e

B

Write the number in the place value chart and then in expanded form.
1.) 9.24

ones	tenths	hundredths

2.) Choose the letter that shows the expanded form for 5.57 .

A $7.0+0.7$
B $7.0+0.07$
C $5.0+0.5+0.07$
D $7.0+0.75$
3.) What fraction represents point J? \qquad

4.) What decimal represents point L ? \qquad

5.) Write the decimal for point K.

6.) Jayden is finding points on a number line. What decimal best represents point F?

A 10
B 8.9
C 9.7
D 9.9

Write the number in the place value chart and then in expanded form.
1.) 9.24

ones	tenths	hundredths
9	2	4

$9.0+3.0+.04$
2.) Choose the letter that shows the expanded form for 5.57 .

A $7.0+0.7$
B $7.0+0.07$
C $5.0+0.5+0.07$
D $7.0+0.75$
3.) What fraction represents point J? $\quad 3 \frac{8}{10}$

4.) What decimal represents point L ? 7.3

Module FDR Lesson 11 Independent Practice Key

5.) Write the decimal for point K. 8.6

6.) Jayden is finding points on a number line. What decimal best represents point F?

A 10
B 8.9
C 9.7
(D) 9.9

Write the decimal for each blank box on the number line.

e

Write the decimal for each blank box on the number line.

Activity 1

Write the decimal for the shaded models.
1.)

\qquad
2.) Shade 0.3 and 0.30 .

3.) Write 2 equivalent decimals and then shade the matching amounts.

Activity 2

Write the decimal for the shaded models.
1.)

\qquad
2.) Shade 0.2 and 0.20 .

3.) Write 2 equivalent decimals and then shade the matching amounts.

162

Write the decimal for the shaded models.
1.)

$0.9=$

2.) Shade 0.3 and 0.30 .

॥

3.) Write 2 equivalent decimals and then shade the matching amounts.

Activity 2

Write the decimal for the shaded models.
1.)

2.) Shade 0.2 and 0.20 .

3.) Write 2 equivalent decimals and then shade the matching amounts.

1.) Choose the letter that shows the expanded form for 7.57 .

A $7.0+0.7$
B $7.0+0.07$
C $7.0+0.5+0.07$
D $7.0+0.75$
2.) What decimal represents point J? \qquad

3.) What decimal represents point L ? \qquad

4.) Nora is finding points on a number line. What decimal best represents point S?

A 3.3
B 3.2
C 2.2
D 3.4

Write the equivalent decimals for the shaded models.
5.)

\qquad
6.) Shade 0.8 and 0.80 .

7.) Which statement is true about the shaded models below?

A $0.50>0.5$
B $0.05>0.5$
C $0.5=0.05$
D $0.50=0.5$
1.) Choose the letter that shows the expanded form for 7.57 .

A $7.0+0.7$
B $7.0+0.07$
(C) $7.0+0.5+0.07$

D $7.0+0.75$
2.) What decimal represents point J?

3.) What decimal represents point L ? 5.6

4.) Nora is finding points on a number line. What decimal best represents point S?

A 3.3
B 3.2
C 2.2
D 3.4

Write the equivalent decimals for the shaded models.
5.)

$0.4=$

6.) Shade 0.8 and 0.80 .

7.) Which statement is true about the shaded models below?

A $0.50>0.5$
B $0.05>0.5$
C $0.5=0.05$
(D) $0.50=0.5$

Module FDR

0.50

0.45

0.5

0.58

Module FDR Lesson 13 Modeled Practice \#1 Key

greater than

0.58

0.50

0.45

0.5
(<)
0.58

Activity 1

Shade and compare using $>,<$, or $=$.
1.)

0.4

0.26
2.)

0.40.60

Shade and compare using $>,<$, or $=$.
3.)

0.77

0.67
4.)

0.4

0.6

Activity 2

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$,
1.)

2.)

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
3.)

4.)

\qquad

Activity 1

Shade and compare using $>,<$, or $=$.
1.)

0.4
$>$
0.26
2.)

0.4
(
0.60
3.)

0.77
\geqslant
0.67
4.)

0.4

0.6

Activity 2

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$
1.)

0.4
($<$
0.5
2.)

0.33
\geqslant
0.23

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
3.)

4.)

Write the equivalent decimals for the shaded models.
1.)

$=$
\qquad
2.) Shade 0.4 and write the equivalent decimal.

$=$
3.) Write 2 equivalent decimals and shade.

Shade and compare using $>,<$, or $=$.
4.)

0.7

0.87

Shade and compare using $>,<$, or $=$.
5.)

0.8
0.90.53

0.46

0.53
6.)

7.)

Which of the following makes the statement true?
A $>$
$\mathrm{B}<$
$\mathrm{C}=$

Write the equivalent decimals for the shaded models.
1.)

2.) Shade 0.4 and write the equivalent decimal.

$0.4=0.4$

3.) Write 2 equivalent decimals and shade.

Shade and compare using $>,<$, or $=$.
4.)

0.7
\leqslant
0.87

Shade and compare using $>,<$, or $=$.
5.)

0.8
(
0.9
6.)

0.46
(2)
0.53

7.)

Which of the following makes the statement true?
A >
B $<$

0.7

0.69

Module FDR

0.46

0.4

0.03

0.3

0.7

0.69

0.46

0.4

Module FDR
 Lesson 14
 Modeled Practice \#3 Key

0.03

0.3

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
1.)

2.)

\bigcirc

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
3.)

\qquad

Comparing Decimals Tic Tac Toe Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be " O."
3. Take turns selecting a problem in the box.
4. Compare the decimals using $>,<$, or $=$,
5. Use the Fractions and Decimals Mat and dry erase marker to solve the problem.
6. If a player's answer is correct, then mark the box with either an " X " or an " O."
7. Continue to take turns.
8. Play the game until one player has 3 boxes in any column, row, or diagonal.

$0.7 \bigcirc 0.67$	$0.88 \bigcirc 0.9$	$0.29 \bigcirc 0.2$
$0.9 \bigcirc 0.90$	$0.51 \bigcirc 0.4$	$0.56 \bigcirc 0.6$
$0.3 \bigcirc 0.33$	$0.7 \bigcirc 0.77$	$0.1 \bigcirc 0.10$

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
1.)

2.)

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.

3.)

0.7
(2)
0.74

Comparing Decimals Tic Tac Toe

Directions:

1. Decide which player will play first. The other player will play second.
2. Decide who will be " X " and who will be " O."
3. Take turns selecting a problem in the box.
4. Compare the decimals using $>,<$, or $=$.
5. Use the Fractions and Decimals Mat and dry erase marker to solve the problem.
6. If a player's answer is correct, then mark the box with either an " X " or an " O ."
7. Continue to take turns.
8. Play the game until one player has 3 boxes in any column, row, or diagonal.

$0.7 \ominus 0.67$	$0.88 \ominus 0.9$	$0.29 \ominus 0.2$
$0.9 \ominus 0.90$	$0.51 \ominus 0.4$	$0.56 \bigodot 0.6$
$0.3 \ominus 0.33$	$0.7 \ominus 0.77$	$0.1 \bigodot 0.10$

1.) Shade the models.

0.20.5

Which of the following makes the statement true?
A >
B <
C =

Shade and compare using $>,<$, or $=$.
2.)

0.76

0.82

Shade and compare using $>,<$, or $=$.
3.)

0.7

0.46
\bigcirc

0.5

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
5.)

6.)

7.) Which decimal makes the statement true?

$$
0.26<
$$

A 0.04
B 0.20
C 0.4
D 0.25
\square

1.) Shade the models.

0.2
(<)
0.5

Which of the following makes the statement true?
$A>$
B $<$
$C=$

Shade and compare using $>,<$, or $=$.
2.)

0.76

0.82

Shade and compare using $>,<$, or $=$.
3.)

0.7
©
0.87
4.)

0.46
(
0.5

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
5.)

(

6.)

$0.1 \geqslant 0.05$
7.) Which decimal makes the statement true?

$$
0.26<
$$

A 0.04
B 0.20
C) 0.4

D 0.25

0.9

O $\frac{76}{100}$

$\frac{7}{10}$0.84

$$
0.9 \ominus \quad \frac{76}{100}
$$

0.94 (c) $\frac{10}{10}=1$

Shade and compare using $>,<$, or $=$.
1.)

0.74

$\frac{6}{10}$
2.)

0.62

$\frac{8}{10}$

Shade and compare using $>,<$, or $=$.
3.)

0.58

$\frac{10}{10}=\square$

Shade and compare using $>,<$, or $=$.
1.)

0.74
\bigcirc
$\frac{6}{10}$
2.)

0.62
(c)
$\frac{8}{10}$

Module FDR Lesson 15 Practice Key

Shade and compare using $>,<$, or $=$.
3.)

0.58
©

Shade and compare using $>,<$, or $=$.
1.)

0.470.55
2.)

0.70
0.7

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
3.)

4.)

Shade and compare using $>,<$, or $=$.
5.)

0.33
$\bigcirc \frac{3}{10}$
6.)

0.18

$\frac{8}{10}$
7.)

Which of the following statements is true?
A $1<0.66$
B $0.66>1$
C $1=0.66$
D $1>0.66$
\square

Shade and compare using $>,<$, or $=$.
1.)

0.47
($<$
0.55
2.)

0.70
Θ
0.7

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.
3.)

4.)

Shade and compare using $>,<$, or $=$.
5.)

0.33
(>) $\frac{3}{10}$
6.)

0.18
(
$\frac{8}{10}$

Module FDR Lesson 15 Independent Practice Key

7.)

Which of the following statements is true?
A $1<0.66$
B $0.66>1$
C $1=0.66$
(D) $1>0.66$
least to greates \dagger
$\begin{array}{lll}0.17 & 0.07 & 0.7\end{array}$

N
least to greatest

Module FDR Lesson 16 Modeled Practice Key

least to greates \dagger

0.17
0.07
0.7

$0.07,0.17,0.7$

least to greates \dagger

$0.39,0.8,1.0$

1.) Shade and order the decimal numbers from least to greatest.

2.) Order the decimal numbers for the shaded models from least to greatest.

1.) Shade and order the decimal numbers from least to greatest.
0.52
0.32
0.4

$0.32,0.4,0.52$

2.) Order the decimal numbers for the shaded models from least to greatest.

$0.05,0.2,0.4$

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.

> 1.)

Shade and compare using $>,<$, or $=$.
2.)

0.72

$\frac{7}{10}$
3.)

0.56

4.) Look at the shaded models.

Which of the following makes the statement true?
A $0.03>0.37$
B $\quad 0.3>0.37$
C $0.3<0.37$
D $0.3=0.37$
5.) Shade and order the decimal numbers from least to greatest.
0.4
|||||||

6.) Order the decimal numbers for the shaded models from least to greatest.

7.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?
A 0.21;0.3; 0.02
B 0.3; 0.21; 0.02
C 0.02; 0.3; 0.21
D 0.02; 0.21; 0.3

Write the decimal for the shaded models. Then, compare using $>,<$, or $=$.

1.)

0.60

Shade and compare using $>$, <, or $=$.
2.)

0.72
($\quad \frac{7}{10}$

3.)

0.56
($<$
$\frac{8}{10}$
4.) Look at the shaded models.

Which of the following makes the statement true?
A $0.03>0.37$
B $\quad 0.3>0.37$
(C) $0.3<0.37$

D $0.3=0.37$

5.) Shade and order the decimal numbers from least to greatest.
0.4

$0.04,0.4,0.49$

6.) Order the decimal numbers for the shaded models from least to greatest.

Module FDR Lesson 16 Independent Practice Key

7.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?
A 0.21;0.3; 0.02
B 0.3; 0.21; 0.02
C 0.02; 0.3; 0.21
(D) $0.02 ; 0.21 ; 0.3$

Shade and order the decimals from least to greatest.

Shade and order the decimals from least to greatest.

greates t to leas \dagger

0.73
0.8
0.17

greatest to leas \dagger

0.09
0.7
0.46

greatest to leas \dagger

0.73
0.8
0.17

$0.8,0.73,0.17$

greatest to least

$0.7,0.46,0.09$

1.) Shade and order the decimals from greatest to least.
0.6
0.26
0.62

2.) Order the decimals for the shaded models from greatest to least.

1.) Shade and order the decimals from greatest to least.

$0.62,0.6,0.26$

2.) Order the decimals for the shaded models from greatest to least.

1.) Look at the shaded models.

Which of the following statements is true?
A $1>0.95$
B $1<0.95$
C $1=0.95$
D $1<0.09$
2.) Shade and order the decimals from least to greatest.
0.3
0.32

0.05

3.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?
A 7; 0.8; 0.82
B 0.8; 0.7; 0.82
C 0.82; 0.8; 0.7
D 0.7; 0.8; 0.82
4.) Shade and order the decimals from greatest to least.
0.3
0.13
0.43
||l||

5.) Order the decimals for the shaded models from greatest to least.

6.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.63; 0.6; 0.06
B 0.6; 0.63; 0.06
C 0.06; 0.6; 0.63
D 0.06; 0.63; 0.6
7.) Order the money from greatest to least. $\$ 0.10$
$\$ 0.01$
\$0.11

1.) Look at the shaded models.

Which of the following statements is true?
(A) $1>0.95$

B $1<0.95$
C $1=0.95$
D $1<0.09$
2.) Shade and order the decimals from least to greatest.

0.3
0.32
:---

3.) Look at the shaded models.

Which of the following shows the decimals in order from least to greatest?
A 7; 0.8; 0.82
B 0.8; 0.7; 0.82
C $0.82 ; 0.8 ; 0.7$
(D) $0.7 ; 0.8 ; 0.82$
4.) Shade and order the decimals from greatest to least.
0.3
0.13
0.43

$0.43,0.3,0.13$

5.) Order the decimals for the shaded models from greatest to least.

$0.3,0.1,0.07$
6.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
(A) $0.63 ; 0.6 ; 0.06$

B 0.6; 0.63; 0.06
C 0.06; 0.6; 0.63
D 0.06; 0.63; 0.6

Module FDR
 Lesson 17 Independent Practice Key

7.) Order the money from greatest to least.
$\$ 0.10$
\$0.01
\$0.11
\$0.11, \$0.10, \$0.01

Shade the models and solve.
1.) $\frac{4}{10}+\frac{4}{10}=$

2.) $\frac{9}{10}-\frac{3}{10}=$

Shade the models and solve.
1.) $\frac{4}{10}+\frac{4}{10}=\frac{8}{10}$

2.) $\frac{9}{10}-\frac{3}{10}=\frac{6}{10}$

Module FDR Lesson 18 Modeled Practice

Module FDR Lesson 18 Modeled Practice Key

Read the problem, shade the models and solve.
1.) Gilbert drove 1.3 kilometer to the post office. Then he drove 1.5 kilometer to the store.

What is the total distance Gilbert drove? \qquad
2.) Write a decimal for the shaded models and solve.

3.) Solve,

$$
2.8-1.3=
$$

Read each problem and use the models to help solve.
1.) Corin has 2.6 liters of water.

If she drinks 0.4 liters of water after soccer practice, what will be the amount of water remaining?
\qquad liters
2.) Will had a piece of string 2.6 meters long. He cut off a 1.5 meter piece. How much string is left?

Read the problem, shade the models and solve.
1.) Gilbert drove 1.3 kilometer to the post office. Then he drove 1.5 kilometer to the store.

$+$

What is the total distance Gilbert drove?

2.8 kilometers

2.) Write a decimal for the shaded models and solve.

$1.4+\frac{1.5}{+}$
3.) Solve.

$$
2.8-1.3=1.5
$$

Read each problem and use the models to help solve.
1.) Corin has 2.6 liters of water.

If she drinks 0.4 liters of water after soccer practice, what will be the amount of water remaining?
\square
2.2 liters
2.) Will had a piece of string 2.6 meters long. He cut off a 1.5 meter piece. How much string is left?

1.1 meters
1.) Shade and order the decimals from least to greatest.
0.5
0.45
0.63

N1/N.

2.) Order the decimals for the shaded models from greatest to least.

3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.82; 0.07; 0.08
B $0.7 ; 0.8 ; 0.82$
C 0.82; 0.8; 0.7
D 0.82; 0.7; 0.8

1.) Shade and order the decimals from least to greatest.
0.5
0.45
0.63

$0.45,0.5,0.63$

2.) Order the decimals for the shaded models from greatest to least.

0.4

0.2
\square

Module FDR Lesson 18 Independent Practice Key

3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.82; 0.07; 0.08
B $0.7 ; 0.8 ; 0.82$
(C) $0.82 ; 0.8 ; 0.7$

D 0.82; 0.7; 0.8

$+$
$=$

$1.13+$
1.21
=

$\underline{1.78}-0.22=\underline{1.56}$
1.) There are 2.58 liters of lemonade. Shade the amount of lemonade below.

Kara poured 1.3 liters into some cups. What will be the amount of lemonade remaining? \qquad liters
2.) Shade the decimals and solve.

$+$

$$
1.25+1.32=
$$

\qquad

Read each problem and solve.
1.) The container has 2.56 milliliters of water.

Diego poured out 0.25 milliliters. How much water is remaining?
\qquad milliliters
2.) Steven bought a toy for $\$ 1.45$ and a snack for $\$ 1.20$. How much money did he spend? Shade the decimal and solve.

\$ \qquad
1.) There are 2.58 liters of lemonade. Shade the amount of lemonade below.

Kara poured 1.3 liters into some cups. What will be the amount of lemonade remaining? 1.28 liters
2.) Shade the decimals and solve.

$$
1.25+1.32=\frac{2.57}{}
$$

Read each problem and solve.
1.) The container has 2.56 milliliters of water.

Diego poured out 0.25 milliliters. How much water is remaining?

2.31 milliliters

2.) Steven bought a toy for $\$ 1.45$ and a snack for $\$ 1.20$. How much money did he spend? Shade the decimal and solve.

1.) Shade and order the decimals from least to greatest.
0.7

0.67
0.60

2.) Order the decimals for the shaded models from greatest to least.

3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.2; 0.30; 0.6
B $0.6 ; 0.30 ; 0.2$
C 0.6; 0.2; 0.30
D 0.30; 0.6; 0.2

Read the problem and write an expression. Then shade the models and solve.
How much more does the fish

pounds
Module FDR
Lesson 19
Independent Practice

6.) Mason threw a ball 5.73 meters. Nathan threw a ball 7.82 meters. Which expression can be used to
find how much farther Nathan threw the ball than Mason?
1.) Shade and order the decimals from least to greatest.
0.7
0.67
0.60

$0.60,0.67,0.7$
2.) Order the decimals for the shaded models from greatest to least.

$0.8,0.50,0.27$

Module FDR Lesson 19 independent Practice Key

3.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.2; 0.30; 0.6
(B) $0.6 ; 0.30 ; 0.2$

C 0.6; 0.2; 0.30
D 0.30; 0.6; 0.2

$\stackrel{y}{\underline{2}-0}$ Module FDR Lesson 19 Independent Practice Key

$2.45-1.23$

Read the problem and write an expression. Then shade the models and solve.
4.) The fish weighs 2.45 pounds and the small snake weighs 1.23 pounds. How
weigh than the snake?
Module FDR
Lesson 19
Independent Practice Key

[^0]
6.) Mason threw a ball 5.73 meters. Nathan threw a ball 7.82 meters. Which expression can be used to
\[

$$
\begin{array}{ll}
\text { A } & 5.73+7.82 \\
\text { B } & 7.8+5.73 \\
\text { C } & 7-5.73 \\
\text { (D) } 7.82-5.73
\end{array}
$$
\]

dule FDR Practice

amount of money Rosa earned?

Read the problem. Then write an expression to solve the problem.
1.) Caitlin saved $\$ 19.67$. She donated $\$ 8.25$ to a charity. How much money does she have left?

Expression \qquad
2.) Jeremy bought 2.3 pounds of pineapple and 4.2 pounds of carrots at the farmer's market. What is the total weight of pineapple and carrots he bought?

Expression

\qquad
3.) Kristen improved her swimming time from 8.35 seconds to 6.24 seconds. By how much time did she improve?

Expression \qquad
Module FDR
Lesson 20
Practice Key
Read the problem and write an expression. Then, shade the models and solve.
1.) Rosa earned $\$ 2.50$ for watering the flowers and $\$ 2.25$ for taking out the trash. What is the total
amount of money Rosa earned?

Read the problem. Then write an expression to solve the problem.
1.) Caitlin saved $\$ 19.67$. She donated $\$ 8.25$ to a charity. How much money does she have left?

Expression $\quad \$ 19.67$ - \$8.25
2.) Jeremy bought 2.3 pounds of pineapple and 4.2 pounds of carrots at the farmer's market. What is the total weight of pineapple and carrots he bought?

Expression $\quad 2.3+4.2$
3.) Kristen improved her swimming time from 8.35 seconds to 6.24 seconds. By how much time did she improve?

Expression 8.35 - 6.24
1.) Order the decimals for the shaded models from greatest to least.

2.) Look at the shaded models.

Which of the following shows the decimals in order from greatest to least?
A 0.6; 0.30; 0.2
B 0.2; 0.30; 0.6
C 0.6; 0.2; 0.30
D 0.6; $0.20 ; 0.30$
Module FDR
Lesson 20
Independent Practice
 than Joe?
II

	A	A	A

Read the problem. Then write an expression to solve the problem.
5.) Claire saved $\$ 25.29$. She donated $\$ 13.15$ to a charity that helps rescue animals. How much money
does she have left?
6.) Nate bought 2.3 pounds of apples and 3.2 pounds of cucumbers at the farmer's market. What is the
total weight of apples and cucumbers he bought?

B

1.) Order the decimals for the shaded models from greatest to least.
0.17

$0.70,0.17,0.07$
0.07

0.70

2.) Look at the shaded models.

0.2

0.30

Which of the following shows the decimals in order from greatest to least?
(A) $0.6 ; 0.30 ; 0.2$

B 0.2; 0.30; 0.6
C 0.6; 0.2; 0.30
D 0.6; 0.20; 0.30

Module FDR Lesson 20 Independent Practice Key

4.) Kim bought a hotdog for $\$ 1.25$ and a bottle of water for $\$ 1.33$. What is the total amount of money
she spent?

$$
\$ 1.25 \square+\$ 1.33=\$ 2.58
$$

$\stackrel{y}{2}-0$ Module FDR Lesson 20 Independent Practice Key

Read the problem. Then write an expression to solve the problem.
5.) Claire saved \$25.29. She donated $\$ 13.15$ to a charity that helps rescue
does she have left?

E

[^1]
[^0]:

[^1]: farmer's market. What is the
 at the

